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ABSTRACT

The laminar flow of a polymer solution near a flat plate of
infinite extent was investigated theoretically for three cases: (a)
the plate is impulsively started and moves in its own plane with a
constant velocity; (b) the plate executes linear harmonic oscilla-
lations in its own plane; (c) motion of the plate in this plane is a
random function of time. By combining the results with a simple
model for turbulent flow near a wall, a number of experimentally
observed characteristics of the drag reduction phenomenon are
predicted. The merits of this transient shear explanation of drag
reductionwere compared to those of previously offered hypotheses.
Some justification was found for expecting the transient shear
flow mechanism to be dominant at large flow rates.
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THE RELATIONSHIP OF DRAG REDUCTION TO THE TRANSIENT
LAMINAR SHEAR FLOW PROPERTIES OF POLYMER SOLUTIONS

INTRODUCTION

The ability of soluble, high-molecular-weight polymer molecules to reduce drag in
turbulent flow has been known for more than two decades. The explanation for this im-
portant phenomenon is still not known with certainty, however. Some investigators (1)
have asserted that the interaction of an individual polymer molecule or aggregate with a
turbulent eddy is of primary importance, so that drag reduction may not be viewed as a
continuum phenomenon. Others have adopted the continuum point of view and related
measured or theoretically predicted solution flow properties to characteristics of the
turbulent boundary layer. For example, Metzner (2) and others have measured large
elongational viscosities for dilute polymer solutions and have proposed a mechanism for
drag reduction on this basis. More recently a continuum explanation related to the be-
havior of polymer solutions in transient laminar shear flows has been suggested by Han-
sen (3) and independently by Meek and Baer (4). In the present work new theoretical re-
sults on the behavior of these solutions in such flows are presented. These results are
combined with a simple mathematical model of the turbulent boundary layer to predict
the drag reduction behavior in turbulent pipe flow. Finally, the relative merits of the
transient shear, high elongational viscosity, and individual molecule explanations for drag
reduction are considered.

TRANSIENT LAMINAR SHEAR FLOWS

In each of the three, nonsteady, laminar shear flows of interest, a polymer solution
is supposed bounded on one side by a flat plate of infinite extent. The solution is initially
at rest in the first case, and at time t = 0 the plate is instantaneously accelerated and
moves in its own plane with a constant velocity U. That is to say,

v. = 0 for y ?0,O t =0

Vx = U for y =O t20 (1)

-Xe for y c,

where x denotes* distance parallel to the plate velocity, y the distance perpendicular to
the plate, and vx the liquid velocity in the x direction (Fig. 1). In the second case

vx =U cos wt for y =O

and (2)

vX 0: for y -

and the flow after the decay of transients created in starting the plate from rest is
treated. The third case has the boundary conditions

*The last section of this report lists the definition of symbols.

1



R. J. HANSEN

/L~X / Fig. 1- The xy coordinate
system

PLATE VELOCITY

v= F(t) for y = O

and (3)
VX e0 for y DC-,

where F(t) denotes a random function of time.

The fluid motion is in all cases governed by Newton's Second Law and the constitu-
tive equation for the polymer solution. The former takes the form

_1VX -a, (4)

P at = By

by virtue of the invariance of vx, the only nonzero velocity component, with x. In Eq. (4),
r denotes the shear stress in the x and y planes, and p denotes the liquid density. The
constitutive equation assumed to characterize the polymer solution is the convected Max-
well model (5), which in these circumstances is

'r A aT(5)

By HL H-at

The solution viscosity HL and relaxation time A are assumed independent of shear rate.
Recent rheological studies (6, 7) suggest that these assumptions together with Eq. (5) give
a qualitatively correct description of the stress-strain rate relationship in the polymer
solution.

Equations (4) and (5) for the impulsive start of the plate can be solved by the evalua-
tion of certain contour integrals (8). For the oscillating plate, a separation-of-variables
technique may be employed. (The random-motion case may be treated as a superposi-
tion of oscillatory solutions.) These procedures need not be carried out, however, be-
cause the equations have the same form as the generalized telegraphy equations for the
case of zero leakage conductance. Solutions for arbitrary leakage conductance and
boundary conditions analogous to Eqs. (1) and (2) have been given in the transmission-
line literature (8, 9). Thus i- and v. are obtained directly from these solutions by sub-
stituting - r for current, v, for potential, 14h, V/tL, and p for resistance, inductance,
and capacitance per unit length respectively, and zero for leakage conductance.

The following expressions for the fluid velocity and wall shear stress are obtained
for the impulsive-start case from the transmission line analogy:

VX e-t/2 [I,(z.) + 2y,(z2, z,) + 2y2(z2, z 1)] 8(t - t) (6)

-( e t/-2k (7)
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Here In(z 1 ) denotes the modified Bessel function of order n with argument zj, and
( t - 57 denotes the unit step function. Also

2 K

(t - O
2K

2 K

S5= 4

Yn (Z2 , Z1)
m=O \Z1/

In+2m(Z1I)

The velocity field given by Eq. (6) is shown in Fig. 2 for four finite values of t/2K and
fora Newtonian fluid, for which K = 0 or t/K -a). It is evident from this plot that a
transverse disturbance in a fluid for which K • 0 propagates with a finite velocity,
whereas the propagation velocity is infinitely large in a Newtonian fluid. The large
change in fluid velocity at the propagating wavefront for K • 0 probably in reality occurs
over a small range of y rather than discontinuously, due to nonlinear effects which have
been ignored in Eq. (5).

1.

1.

1.

Fig. 2 - The velocity profile
in the fluid for five values
of t/A
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Fig. 3 - The instantaneous value of the wall shear
stress on an impulsively started plate

The variation in wall shear stress with t/2K given by Eq. (7) is shown in Fig. 3. It
is qualitatively similar to experimental results (10) for t/2K greater than about 0.3, as
well as to the wall shear stress predicted in this range of t/2K using a three-constant
constitutive equation (10). Neither theoretical nor experimental results have been given
previously for smaller values of this parameter. The corresponding result for a New-
tonian fluid is also shown. It is obtained (11) from the equation

r__/ v 2K (8)
Pu2 t~~~~

pU2 I4t 27TKU2 t

Of importance in the viscous-sublayer model introduced subsequently is the time
average of r,, defined as

T

rO = T-| Go dt (9)
0

The integral on the right-hand side of this equation cannot be evaluated in closed form
when -r^ is given by Eq. (7). The integration has therefore been carried out numerically
using Simpson's Rule. The result is shown in Fi 4 in the form (- 0 /p U2) VUI;v as a
function of T/2K. Also shown is (70 /pU2 ) KU2 /v for a Newtonian liquid, obtained by in-
tegrating Eq. (8). The (normalized) time-averaged wall shear stress is seen to be less
for the polymer solution than for the Newtonian liquid when T/2 K is small compared to
unity and is seen to asymptotically approach the Newtonian value as T/2K becomes
large.

In the oscillating plate case v. and To from the solution of the relevant transmission-
line problem (9) are given by

-. - T-MV W- Ne (10)
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Fig. 4 - The time-average value of the wall shear stress
on the impulsively started plate

and

0 /__~ (M sin ct - N cos wt) ,(1

y1 + W2K2

where

M2 COP K 1+ 22)

and

N2 COP CoxK + 1~+2 ~2K2

The time average of the wall shear stress is not a useful indicator of the effect of the
polymer additive on drag in this case, since the sign of Tro varies as the plate oscillates.
The mean-square value -T,, defined by the following expression, is significant:

w t= K+ 2wr

2 f- 2 dt. (12)

Here K is an arbitrary constant. Substitution of Eq. (11) into Eq. (12) gives

2
,2 pJ~W(13)

2 1 ~+, w2K
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The corresponding calculation for a Newtonian liquid gives

_ 0 _ 2 (14)

(This result may also be obtained from Eq. (13) by remembering that the relaxation time
of a Newtonian liquid is assumed zero.) Consequently, in the root-mean-square sense,
drag is lower for the polymer solution than for the Newtonian liquid of the same density
and viscosity when wK is significant compared to unity.

Finally, in the case where v. at y = 0 is a random function of time, this function
may be represented as the superposition of simple harmonic velocities of different am-
plitudes, frequencies, and phase (12). The elemental contribution AF, to F (t) of the
component with frequency X may be written in complex notation as

AF. = 2 (nU,, eit + AU e-it) (15)

Here Au. denotes the complex magnitude of this velocity component, AU* denotes its
complex conjugate, and j = fL. The mean-square value of F(t)is given (12) as

[ ]2 E(AU ) (AUK) (16)
[F~t)] 2

if F(t) is the sum of velocity components of discrete frequencies. For the more general
case involving a continuous frequency spectrum, the distribution function S (w) is intro-
duced and defined as

S(cw) = lim .u (AU,) (17)

Substituting Eq. (17) in Eq. (16) and replacing the summation by an integral over all fre-
quencies gives

[F(t)] 2 = 2 X S(c) dw (18)

Equation (11), written in complex form, gives the following relationship among ATO, the
contribution to the wall shear stress associated with the frequency co, AU<,, and AU,:

ATo = 2 2 [(Mj + N) AU,, eight + (-Mj + N) AU.* e- jwtj (19)
2 VI+ wK2

This equation is of the same form as Eq. (15). Consequently, the mean-square values of
T o are obtained from Eq. (16), (17), and (18) by replacing the coefficients of the expo-
nential terms in Eq. (15) by those in Eq. (19). The results, for F (t) associated with dis-
crete and continuous frequency spectra, are respectively
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_2 P / CO (AUS) (AU*) (20)
_ 21+ c,) A 2

and

T 2 0 K X P s(a dw (21)

The corresponding equations for a Newtonian fluid are the same except that WK in the
demoninator is zero. Since all terms in the summation in Eq. (20) are positive, as is the
integrand in Eq. (21) for all co, the conclusion follows that T2 is less for a polymer
solution than for a Newtonian fluid for any F(t) . This effect will be pronounced when
F(t) is composed primarily of high-frequency components, i.e., when cK >> 1 where
S(w) or (AU.) (AU*) is large.

TURBULENT-FLOW PREDICTIONS

Drag reduction in turbulent flow is due primarily to the effect of the polymer addi-
tive on the fluid motion very near the wall. The presence of the additive outside the
viscous sublayer and buffer zones in turbulent pipe flow, for example, have been shown
by experiment (13) to have little or no effect on the relationship between flow rate and
wall shear stress. In what follows, therefore, the turbulent flow near the wall of a liquid
described by Eq. (5) is examined theoretically.

The conceptual model adopted for turbulent flow in the wall region is that first pro-
posed for a Newtonian liquid by Einstein and Li (11) and recently refined by Meek and
Baer (14). Localized regions of periodic growth and decay of the sublayer are postulated.
The decay is assumed to occur in a negligible amount of time compared to the growth,
which is governed by viscous processes. The flow near the wall in the growth stage is
represented by Stokes' first problem, i.e., by the impulsive start of a flat plate described
by Eq. (1). That is to say, the time-averaged wall shear stress in the turbulent flow is
set equal to -T from Eqs. (8) and (9), T being identified with the period of growth of the
periodic region and U being identified with U,, the liquid velocity at the outer edge of
this region. After terms are rearranged and the friction velocity u, (defined as Up)
is introduced, the following expression is obtained:

(U) T (22)

Recent experimental studies (14) indicate that this simple model gives qualitatively cor-
rect predictions for turbulent flow in a pipe. Quantitative agreement has been obtained
by one investigator (15) when us was replaced by v in Eq. (22), V denoting the average
flow velocity in the pipe.

For the turbulent flow of the polymer solution, the relationship among To, T, and U,
obtained by substituting Eq. (7) into Eq. (9), may be used and U again identified with Us.
The result is

us\ 7T U2 1 (23)

U 4 v D2

7



R. J. HANSEN

where D denotes the ratio of ;To for the polymer solution to that for the Newtonian fluid at
the same value of T. Rearrangement of Eq. (23) gives

2(Lu2)
2 

D2

The quotient on the left-hand side of this equation is plotted as a function of T/2 K in
Fig. 5 together with the corresponding result for a Newtonian fluid.

10

POLYMER SOLUTION NEWTONIAN FLUID

0.1

T
2X

(24)

Fig. 5 - Turbulent-flow predictions for a Newtonian fluid
and a polymer solution

Several features of this plot are significant. First, for sufficiently large T/2K the
behavior of the polymer solution in the wall region is essentially Newtonian. This result
is consistent with the experimentally observed flow behavior of polymer solutions at low
wall shear stresses (large T) or low polymer concentrations and molecular weights
(small K) or both.

Second, the deviation from Newtonian behavior evident in Fig. 5 corresponds to a
reduction in turbulent-flow drag. For small T/2X the nondimensional quanity Ps /U ) 2/

(7iU *X/2 >) approaches an asymptote given by

US2
_)s _ e.2

(U* / v
(25)

8



NRL REPORT 7274

(This result follows directly from Fig. 4 or may be obtained by evaluating the limit of
(T/2 K)/D 2 as T/2 K approaches zero.) Thus as the wall shear stress increases at small
T/2K, so also does the ratio U8/u,. (us is of the order of magnitude of the mean flow
velocity in the pipe.) In contrast the ratio of Us to u. in the turbulent pipe flow of a
Newtonian fluid has a constant value to a good approximation (11). That the slight devia-
tion from Newtonian behavior for T/2K large compared to unity corresponds to a slight
reduction in drag has been shown by Meek and Baer (4).

A consequence of Eq. (25) is that the quotient U8/u* at a given u, has a maximum
value for a specific polymer additive. For very dilute solutions K increases with con-
centration and molecular weight from the negligibly small value of the solvent alone
(16, 17). When the concentration is large, K is independent of concentration and molec-
ular weight (18). Also v increases slowly with concentration. Thus the ratio K/v is
negligibly small for the solvent, increases with concentration in very dilute solutions,
and decreases with increasing concentration in concentrated solutions. At some inter-
mediate concentration, therefore, K/v attains a maximum value. (Presently available
data do not resolve the question of whether or not the maximum value of K/v will depend
on molecular weight.) Substitution of this maximum value into Eq. (25) gives the maxi-
mum drag-reduction condition.

Experiments by Virk (19) confirm that such a condition exists. The ratio of v to u,
at a given u, ceased to increase with concentration for sufficiently concentrated solu-
tions. The maximum value of V/u* was also independent of molecular weight. Virk's
"maximum drag-reduction asymptote" was characterized by a variation in V with u* 38,
whereas Eq. (25) predicts that Us will be proportional to u,. Since Us and V are of the
same order of magnitude, these two results are qualitatively similar. The functional
relationship between the two velocities is not known precisely, however, so it is not known
if Virk's result and Eq. (25) are in quantitative agreement.

Third, another important characteristic of Fig. 5 is that it shows a continuously in-
creasing effect of the polymer additive with decreasing T/2 K rather than the initiation of
the phenomenon at some critical wall shear stress. The existence of a well-defined
"onset" condition is anticipated from the experimental work of Virk (19) and others
(17, 20). This apparent discrepancy between the theory and experiments may be due to a
weakness in the flow model chosen for the wall region. Alternatively, the prediction of
the theory may be correct, but the deviation from Newtonian behavior may be detectable
by presently used experimental methods only above some fairly-well-defined wall shear
stress.

DISCUSSION

A number of important questions must be raised about the explanation for turbulent
flow drag reduction given above. First, its basis is the solution of the impulsively started
plate problem, where there are no shear stresses in the liquid for t < 0. In reality the
lifetime of such shear-free regions is very small, or they may be absent completely at
large flow rates in turbulent flow (21). It must be asked whether the drag will still be
reduced in these circumstances in which there is not time for the polymer molecules to
relax to their static configurations between successive applications for shear gradients.*
The answer is provided by the treatment given previously of the laminar shear flow
caused by a plate with random motion resulting in Eqs. (20) and (21). The results of this
treatment predict a significant reduction in the mean-square wall shear stress whenever
the distribution function S(cv) is large for cwK of order unity or larger. No particular

*Private communication with A. B. Metzner.
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initial condition on the velocity or shear stress in the polymer solution is specified in
obtaining this result. Therefore, regardless of the form which S(cv) in this laminar flow
problem should have to best approximate the transient shear character of the turbulent
boundary layer, a decrease in turbulent-flow drag is expected when the product of K and
a characteristic frequency of the wall region is large.

A related question is how important the transient shear effects are in causing drag
reduction, compared to the elongational effects discussed by previous investigators (2).*
A part of the answer may be that for a polymer solution to have a large elongational vis-
cosity, it must be in an elongational flow of sufficient duration to allow alignment of the
polymer molecules along the streamlines. It has not yet been established that this con-
dition is satisfied in the wall region of turbulent flows where drag reduction is observed.t
Also, the lifetime of a given elongational region near the wall decreases with increasing
flow rate (21), so that the drag reduction due to elongational effects may decrease with
increasing flow rate. In contrast the deviation from Newtonian behavior expected from
the transient-shear analysis and in general from that observed in experiments increases
with increasing flow rate (with decreasing T/2x). Thus, although the relative importance
of the transient-shear and elongational-viscosity mechanisms is not known with certainty
at present, there is some justification for expecting the former to be dominant at large
flow rates.

A third question is whether a continuum treatment of drag reduction for the very
dilute polymer solutions of greatest interest is permissible. A tentative answer may be
offered on the basis of a comparison of the average distance (L) between polymer mole-
cules and the thickness (y) of the periodic region. The former has been computed as a
function of polymer concentration by Patterson (20). The latter is of the order of 7011/
vF 7 (14). In experiments conducted by Hansen and Little (17, 22, 23) using an aqueoussolution of polyethylene oxide WSR-205, To was of the order of 100 dynes/cm 2, and Mc
and p were about the same as for water. The value of y in these circumstances was
about 0.07 cm. At a concentration of 0.1 ppm by weight, L for this system was approxi-
mately 2 X 10-4 cm. An increase to 100 ppm decreased L by one order of magnitude.
Thus the corresponding range of L /y was about 3 X 10-3 to 3 X 10- 4. Because this ratio
is orders of magnitude less than unity, the conclusion follows that a continuum treatment
of the problem is appropriate in these circumstances (which are typical of those in which
much of the drag-reduction data appearing in the literature were obtained). This conclu-
sion must be regarded as tentative, however, because aggregation may be important for
drag reduction in very dilute solutions (23); it was ignored in the calculation of L (20).

CONCLUSIONS

The drag exerted on an impulsively started flat plate by a polymer solution of infinite
extent is less than that by a Newtonian fluid of the same density and viscosity. The same
is true if the plate executes harmonic or random motion in its own plane. Combination of
the impulsive-start solution with a simple flow model for the wall region leads to the
conclusion that the dissolved polymer additive causes drag reduction in turbulent flow.
As is observed in experiments, the predicted reduction in drag is negligibly small at low
flow rates, low polymer concentrations, and low molecular weights. A maximum drag
reduction condition for a given polymer additive is also predicted.

*Private communication with W. S. Ament.
tPrivate communication with A. B. Metzner.

10



NRL REPORT 7274

ACKNOWLEDGMENTS

The author gratefully acknowledges the discussions with and suggestions made by
Professor A. B. Metzner of the University of Delaware and by Dr. R. C. Little and
Mr. G. J. O'Hara of the Naval Research Laboratory.

NOTATION

D = ratio of To from Eq. (7) and (9) to that from Eqs. (8) and (9) for a given value
of T/2K.

F(t) = a random function of time; AFc = the contribution to F(t) associated with the
frequency a.

M, N = functions of cvp/bc and wk.

S(w) = the distribution function in terms of which F(t) is specified.

T = the period over which the wall shear stress is averaged and also the period
associated with the flow near the wall in turbulent flow.

t = time.

U = plate velocity; AU, = the contribution to U of the harmonic velocity with fre-
quency co; AU* = the complex conjugate of AU<.

us = the fluid velocity at the outer edge of the periodic wall region in turbulent flow.

u * = friction velocity.

v = the average fluid velocity in a pipe.

VX = the x component of fluid velocity.

x = distance parallel to the plate velocity.

y = distance perpendicular to the plate.

z l = V(t - 6 7) / 2A

Z 2 = (t - t) /2k.

( )2 = the mean-square value of ( ).

K = Maxwell relaxation time of a polymer solution.

p = density.

v = kinematic viscosity.

sP = viscosity.

11



12 R. J. HANSEN

T = shear stress in the x and y planes.

TO = instantaneous value of the wall shear stress; ATo = contribution to Tr associated
with the harmonic velocity component with frequency co.

7-0 = time-average value of the wall shear stress.

co = circular frequency.

f~~~~rk = y 
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